Ученые улучшили стабильность и эффективность перовскитных солнечных элементов

Ученые улучшили стабильность и эффективность перовскитных солнечных элементов

Ученые Национального исследовательского технологического университета МИСиС (НИТУ «МИСиС») с коллегами из Института физической химии и электрохимии А.Н. Фрумкина РАН и Университета Тор Вергата (Италия) добились значительной стабильности и эффективности перовскитных элементов – перспективной основы солнечных батарей – благодаря прослойке иодида меди.

Перовскитные материалы – молодой класс полупроводников для оптоэлектроники, считающийся эффективной альтернативой кремнию в производстве солнечных батарей. Ученые решили исправить их главный недочет – нестабильность. Ключевую роль при этом сыграла молекула метилламин-свинец-йод-3 (MAPbI3).

«Фотоактивный слой MAPbI3 кристаллизуется на поверхности транспортного слоя, переносящего положительные заряды (в нашем случае – оксид никеля, NiO). Как известно, при постоянном освещении и последующем нагреве перовскитных солнечных элементов с фотоактивным слоем MAPbI3 выделяются свободный йод и йодоводородная кислота, которые вредят интерфейсу между слоями перовскита и NiO, образуя множество дефектов – и существенно снижая стабильность и производительность устройства», – пояснил научный сотрудник лаборатории перспективной солнечной энергетики НИТУ «МИСиС» Данила Саранин.

Ученые улучшили стабильность и эффективность перовскитных солнечных элементов

Для устранения этой проблемы ученые использовали дополнительную прослойку из иодида меди – полупроводника между перовскитом и дырочно-транспортным NiO. «Данный материал не имеет столь стремительной деградации под действием света, сопровождаемой выделением соединений йода аналогично используемому перовскитному материалу.

ДАТЧАНЕ СОЗДАЛИ БЕЗВРЕДНЫЕ, ГИБКИЕ СОЛНЕЧНЫЕ БАТАРЕИ НА ОСНОВЕ ОРГАНИЧЕСКОГО ПОЛИМЕРА

Более того, дополнительный p-слой позволил улучшить сбор положительных зарядов и существенно снизить концентрацию дефектов на переходе между фото-поглощающим и дырочно-транспортными слоями», – отметил Данила Саранин.

Как пояснили сами ученые, стабилизировать перовскитный элемент аналогичной архитектуры и состава фотоактивного слоя за счет дополнительной органической прослойки – не новая идея для науки. Однако, по их словам, другие научные коллективы привлекали дорогие и сложные в синтезе материалы (производные металлорганического соединения ферроцена, маломолекулярные органические полупроводники).

Ученые же НИТУ «МИСиС» с коллегами первыми попробовали иодид меди – более доступный и простой в применении неорганический материал. Усовершенствование структуры перовскитного элемента, по их наблюдениям, повысило стабильность его работы в среднем на 40%, а КПД вырос до 15,2%.

СОЛНЕЧНЫЕ И ВЕТРОВЫЕ УСТАНОВКИ ОБЕСПЕЧАТ БОЛЕЕ ДЕШЕВУЮ ЭНЕРГИЮ, ЧЕМ УГОЛЬНЫЕ И ГАЗОВЫЕ СТАНЦИИ

Как утверждают создатели, толщина готового элемента составляет менее 1 микрона – в десятки раз меньше, чем у кремниевых солнечных батарей.

Далее ученые намерены создать аналогичную прослойку для стабилизации передачи отрицательных зарядов, а также масштабировать технологию до размеров широкоформатного модуля.