Hi-tech подсолнух от IBM, генерируют электроэнергию с 80% эффективностью

Hi-tech подсолнух от IBM, генерируют электроэнергию с 80% эффективностью

Научно-исследовательское подразделение IBM совместно со швейцарской компанией Airlight Energy представили свою разработку – высокотехнологичную систему, преобразующую солнечный свет и тепло в электроэнергию. В рамках проекта под названием «Подсолнух» (Project Sunflower) была разработана установка HCPVT (highly efficient concentrated photovoltaic/thermal), которая помимо электричества, может обеспечивать здания горячим водоснабжением.

Конструкция «hi-tech подсолнуха» оснащена высокоэффективными фотоэлементами, которые способны преобразовывать собранные рефлекторами в точке фокуса солнечные лучи в электричество при высоких температурах. В основном, элементы и решения, применяемые в HCPVT достаточно известны, исключение составляет лишь одна технология – одновременное использование двух методов генерации солнечной энергии: термального (используются высокие температуры) и светового (фотоэлементы).

 Hi-tech подсолнух от IBM, генерируют электроэнергию с 80% эффективностью

Рефлекторы (отражатели) «подсолнуха» представляют собой вогнутые зеркала, материалом для которых послужила алюминиевая фольга. Специалисты проекта выбрали его из-за относительной дешевизны и высокой отражающей способности. Кроме того, тонкий слой алюминия (толщина 0,2 мм) достаточно надежен и для его защиты не требуется специальных приспособлений.

ЛЕТАЮЩИЕ ВЕТРОГЕНЕРАТОРЫ — БУДУЩЕЕ ВОЗОБНОВЛЯЕМОЙ ЭНЕРГИИ

«Солнечный цветок» с поверхностью 40 м2 имеет внешний вид параболической антенны и состоит из 36 эллиптических «лепестков», каждый из которых включает в себя 6 рефлекторов. Рефлекторы создают точку фокуса световых лучей, в которой размещены 6 коллекторов, по одному на каждый блок из шести отражателей.

 Hi-tech подсолнух от IBM, генерируют электроэнергию с 80% эффективностью

Именно коллекторы и являются «ноу-хау» системы. Прежде всего, каждый коллектор покрыт слоем фотоэлементов из арсенида галлия (GaAs). Это химическое соединение преобразует свет в электроэнергию с гораздо большим КПД (около 38%), чем это делает лучшие аналоги из кремния (около 20%). GaAs более дорогостоящий материал, тем не менее в «фотогальванических подсолнухах» арсенида галлия применяется немного – им покрывается лишь небольшая область, в которой фокусируется свет.

В ГЕРМАНИИ ПОСТРОИЛИ ПОСЕЛОК, ЗДАНИЯ КОТОРОГО ПРОИЗВОДЯТ БОЛЬШЕ ЭНЕРГИИ, ЧЕМ ПОТРЕБЛЯЮТ

Один коллектор устройства содержит покрытие арсенида галлия площадью всего несколько см2, но в итоге, получившейся энергоэффективности фотоэлемента на сегодняшний день нет равных. Генерирующая способность каждого коллектора находится в пределах 2 кВт, а в общем фотоэлектрческая система HCPVT выдает до 12 кВт энергии.

Полупроводниковые фотоэлектрические преобразователи энергии при нагревании теряют определенную часть эффективности. Даже GaAs ограничен температурой около 105 C. Основная проблема – это высокие температуры (выше 1500 C) в точке фокуса и, похоже, исследователи IBM нашли решение.

Специалисты компании применили оригинальный метод, который уже применялся IBM для охлаждения суперкомпьютеров – это жидкостная система охлаждения, в которой в качестве хладагента выступает горячая вода. Но в случае с HCPVT все несколько по-другому – используется «водяной массив», представляющий собой кремниевый блок с микрожидкостными каналами. Таких каналов делается несколько тысяч, и по ним вода поступает к нагреваемым элементам устройства. Такая технология позволяет значительно увеличить количество тепла, которое можно рассеять, микроканалы в этом плане гораздо более эффективны, чем обычные каналы, какие используются в стандартной системе охлаждения.

СОЛНЕЧНАЯ УСТАНОВКА УКРАИНСКОГО ИЗОБРЕТАТЕЛЯ ОБХОДИТСЯ НЕ ДОРОЖЕ 10 ЕВРО/М2

«Технология прямого охлаждения при очень небольшой мощности накачки используется для охлаждения фотовольтаических чипов. Создавая эту систему, мы вдохновлялись решением природы – разветвлённой системой кровоснабжения в организме человека», — поясняет один из авторов исследования Бруно Мишель (Bruno Michel), сотрудник IBM Research. Эти «охладители» закрепляются на задней стороне фотоэлементов, что позволяет охлаждать площадки до требуемой температуры в 105 С. В результате система, которая производит 12 кВт электрической энергии, дополнительно выдает 21 кВт тепловой энергии.

Установка HCPVT дополнительно может быть настроена таким образом, чтобы обеспечивать людей питьевой и горячей водой, а также предоставляла возможность для кондиционирования воздуха. Так, вода, содержащая соли проходит через нагревательные трубки, а затем переходит в дистилляционную систему с проницаемой мембраной, где она опресняется и выпаривается. Для получения холодного воздуха отходящее тепло можно пропускать через адсорбционную холодильную машину, которая представляет собой обычный теплообменник с испарителем и конденсатором, использующего воду в качестве хладагента.

ТУРБИНА НОВОГО ПОКОЛЕНИЯ НЕ ВЛИЯЕТ НА ЕСТЕСТВЕННЫЙ ПОТОК РЕКИ

Срок службы каждого » Sunflower » может составлять приблизительно в 60 лет при соответствующем обслуживании, замене фольги и зеркал-отражателей каждые 10-15 лет (в зависимости от среды эксплуатации). Фотоэлементы нужно будет заменять каждые 25 лет.